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Abstract—Manual interpretation and classification of ECG
signals lack both accuracy and reliability. These continuous time-
series signals are more effective when represented as an image
for CNN-based classification. A continuous Wavelet transform
filter is used here to get corresponding images. In achieving the
best result generic CNN architectures lack sufficient accuracy
and also have a higher run-time. To address this issue, we
propose an ensemble method of transfer learning-based models to
classify ECG signals. In our work, two modified VGG-16 models
and one InceptionResNetV2 model with added feature extracting
layers and ImageNet weights are working as the backbone. After
ensemble, we report an increase of 6.36% accuracy than previous
MLP based algorithms. After 5-fold cross-validation with the
Physionet dataset, our model reaches an accuracy of 99.98%.

Index Terms—ensemble learning, deep learning, medical image
processing, transfer learning, continuous wavelet transform

I. INTRODUCTION

ECG documents the electrical function of the heart by
encapsulating essential electrical activities. It is crucial for the
preliminary detection of numerous cardiac abnormalities and
cardiovascular diseases. Substantial facts like a patient’s heart
rate, heart rhythm, record of heart attack, probable narrowing
of the coronary arteries, traces of reduced oxygen distribution
to the heart, and so forth can be attained from an ECG report.
ECGs are usually conducted in three basic ways: resting ECG,
ambulatory ECG, and cardiac stress test. An ECG graph (Fig
1) can be characterized by a repeated series of P, ORS, T,
and a conditional U wave. The peaks (P, Q, R, S, T and
U), intervals (PR, RR, ORS, ST, and QT), and segments (PR
and ST) represent the traits of an ECG. Deviation from the
expected form of electrical signals signifies several issues
including defects or abnormalities in the heart’s shape, size,
electrolytes, ischemia, heart rhythm etc. Once the anomaly
is detected, risk factors for cardiovascular diseases can be
diagnosed and treated, consequently upgrading the patient’s
medication.

However, unlike detecting, classifying the abnormalities in
ECG precisely is an immensely complicated task considering
the numerous challenges that arise throughout the process. One
of the challenges can be examining and identifying cardiac
problems from ECG paper. Again, applying ordinary visual
analysis approaches can be challenging for physicians as well.
Resultantly, intelligent computer systems that utilize sophis-
ticated image and signal processing techniques have been

978-1-6654-6658-5/22/$31.00 ©2022 IEEE

QRS
I Complex !

R

PR

. ST
Segment

“Segment

1
1 Interval

PR Interval

1
1
L
: QT Interval

Fig. 1: Typical ECG Signal

introduced. This aids in more precise diagnosis of patients and
offers better treatment than empirical procedures. Even in the
case of a fully automated and computerized system, it’s not an
easy process, considering the presence of external noise and
uneven classes in the dataset. The accuracy achieved applying
machine learning is insufficient as well. Multiple attempts have
been made to incorporate deep learning algorithms to address
and solve the issue of precisely classifying cardiovascular
diseases with a lower number of false positive detections.

Zihlmann et al. [1] presented two neural network ar-
chitectures, a convolutional neural network (CNN) and a
convolutional recurrent neural network (CRNN), for ECG
classification. On the hidden challenge testing set, the second
architecture exceeded the first in terms of accuracy, with an
F1 score of 82.1 percent for the PhysioNet/CinC Challenge
2017 atrial fibrillation (AF) classification data set. Rajkumar et
al. [2] employed CNN to attain the features automatically
from the time domain ECG signals collected from the MIT-
BIH database [3]. They achieved 93.6 percent accuracy using
the ELU activation function. Syama et al. [4] implemented
a multilayer-perceptron neural network (MLPNN) for the
classification of ECG signals collected from the MIT-BIH



database and achieved 94 percent accuracy. ESSA et al. [5]
came up with a deep learning-based multi-model ensemble by
implementing a combination of a convolutional neural network
(CNN) and long short-term memory (LSTM) network in order
to classify ECG. The proposed approach was evaluated on the
MIT-BIH database to derive the experimental findings with an
overall accuracy of 95.81 percent. Boussaa et al. [6] employed
Mel Frequency Coefficient Cepstrum algorithm (MFCC) and
artificial neural network (ANN) classifier for classifying ECG
signal extracted from the MIT-BIH database. Hannun et al. [7]
collected 91,232 single-lead ECGs from 53,549 individuals
who used a single-lead ambulatory ECG monitoring device to
create a deep neural network (DNN) to distinguish 12 rhythm
categories. SEN et al. [8] proposed ECG time-series signal
classification and ECG spectrogram pictures to classify heart-
beat arrhythmia. Ullah et al. [9] proposed a two-dimensional
(2-D) convolutional neural network (CNN) model in order
to classify ECG signals into eight classes and achieved an
accuracy of 99.11 percent. Cordos et al. [10] proposed a strat-
egy to use ECG signal for biometric identification employing
Inception-v3, Xception, MobileNet and NasNetLarge models.
They found Inception-v3 model to be the most effective model
for ECG classification having an accuracy of 99.5 percent.
Gajendran et al. [11] used different modern deep networks
trained on the ImageNet database to categorize scalograms
(2D representations) of ECG signals collected from three Phy-
sioNet databases. Rahuja et al. [12] introduced a classifier for
automatic ECG classification employing continuous wavelet
transform and AlexNet CNN. They used PhysioNet research
dataset for their experiment and attained an overall accuracy of
97.3 percent with a limited dataset. Their works demonstrate
that modern CNN architectures performs well for multi-class
ECG signal classification [13]-[16].

Our major contribution is introducing modified VGG-16 and
InceptionResNetV2 models pretrained with ImageNet weights
and finally constructing a soft voting based ensemble archi-
tectures for taking maximum accuracy for respective classes.

II. METHODOLOGY

A. Dataset Description

We used a pre-existing open-source dataset for this work
which consists of three distinct types of ECG signals from
three different types of heart condition Arrhythmia (ARR),
Normal Sinus Rhythm (NSR), and Congestive Heart Failure
(CHF). The original version of the dataset is available at
PhysioNet [17] in three separate sections which are MIT-BIH
Arrhythmia Database [18], MIT-BIH Normal Sinus Rhythm
Database [3] and BIDMC Congestive Heart Failure Database
[19]. The modified version of the dataset combines these three
separate databases in a common format as shown in fig 2.

A common scaling factor was used to normalize the range
of the magnitude followed by a sampling stage with a common
sampling rate of 128Hz and number of samples equal to
65536. This allowed all signals to have the same length.
Number of instances for ARR, NSR, and CHF class are
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Fig. 2: Modified Dataset Combining MIT-BIH Arrhythmia
Database, MIT-BIH Normal Sinus Rhythm Database, BIDMC
Congestive Heart Failure Database

respectively 96, 30, and 36 which equates to a total of 162
ECG recordings.

B. Dataset Preprocessing

Time series data is not compatible with CNN architecture.
To make it compatible, CWT(Continuous Wavelet Transform)
is utilized to convert the one-dimensional signal to a two-
dimensional scalogram.
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CWT is generally expressed by the equation shown in (1)
defined by a scale parameter a > 0 and position parameter b.
This is used as an analyzing function to measure the similarity
between the wavelet and the signal by equating the inner
product between them. The CWT is defined as the sum of
the signal multiplied by scaled and shifted versions of the
wavelet function () also known as the mother wavelet. A
small value of a signifies a compressed wavelet which captures
rapid changing details whereas a large value of a captures
slowly changing details. Generated scalograms after CWT
applied to 1D signals can be interpreted as a time-frequency
representation of the time-series signal. Fig 4 shows sample
scalogram images after applying CWT to three ECG classes.
The generated scalograms are of dimension of 224 x 224 x 3
each.

C. Proposed Methods

Two different approaches are explored to correctly cate-
gorize the three classes. Firstly, a simple CNN architecture
is used as a reference to classify the scalograms. In the
second approach, we made use of both transfer learning and
ensemble methods combining three different pre-trained deep
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Fig. 4: Conversion from ECG Signal to Scalogram Using
Continuous Wavelet Transform

CNN architectures. The following sections will give a detailed
overview of these two approaches.

For the first approach, a CNN is constructed by stacking sev-
eral repeated blocks as shown in fig 3. A single block consists
of a convolutional layer followed by a Batch Normalization
layer. The purpose of the convolutional layer is to extract rel-
evant features from the scalogram. Batch normalization layers
significantly speed up the training process as it standardizes
the input data for each batch. The next layer is a dropout layer
whose purpose is to prevent overfitting by randomly turning
off some learning parameter. The final layer in the block is a
pooling layer which reduces the spatial size of the previous
layer output. These repeated blocks are finally terminated with
an additional dropout layer. After that, flattening is done to
convert to dense layer which is required for classification.
The output layer is activated by Softmax Activation Function.
Hyper-parameters used for this model is summarized in Table
I. They were fine tuned after several test and trial to keep high
accuracy and low loss.
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TABLE II: Augmentation parameters for augmentation of
training images

Augmentation Parameter Value
Random Flip - Horizontal
Random Rotation - 0.2

The final layer is composed of three perceptions and acti-
vation function for this layer is softmax, which is a common
practice for multi-class classification. Softmax generates a
probability value between O to 1 based on the confidence of
prediction.The model was trained for 4 min 36 sec with a
batch size of 128.

In the second approach, prior to building the model, aug-
mentation was performed to increase the quantity of training
data and to incorporate variance into the dataset. The dataset’s
size expanded from 162 to 486 as a result of the augmentation.

Two different state-of-the-art pre-trained CNN architectures
are incorporated for the ensemble model which are, respec-
tively, VGG-16 and InceptionResNetV2. A brief description
about these two models are given in the following section.

1) Modified VGG-16: VGG-16 is a CNN Architecture that
won the 2014 ImageNet Large Scale Visual Recognition Chal-
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Fig. 5: Architecture of the ensemble model

lenge (ILSVRC). The VGG-16 architecture is an enhancement
to the AlexNet design. Instead of directly employing the VGG-
16, we made some slight modification, but kept the feature
extraction part of the model which consists of consecutive
convolutional and pooling layers. Instead of directly transition-
ing to fully connected layers, two intermediate layers, dropout
and global average pooling are used. Fully connected layers
are vulnerable to overfitting, limiting the entire network’s
generalization capabilities. To avoid this, dropout is added as
an intermediate layer for regularization. The reason behind
using the global average pooling layer is it enforces a strong
correspondence between the feature maps and categories.
Finally, three fully connected dense layers are used, where
the final layer is comprised of three perceptions for three
categories.

2) Modified InceptionResnetV2: InceptionResNetV2 is a
convolutional neural network that extends the Inception family
but includes residual connections. It was trained on millions of
images from the ImageNet Database. The architecture accepts
data in a certain format. Because of this, a preprocessing layer
is used to convert to that particular format. Dropout and global
average pooling are used for the same reason mentioned above.
Finally a single dense layer with softmax activation is used for
classification.The complete ensemble architecture is shown in
fig 5.

Ensemble method combines multiple architectures or algo-
rithms to make predictions by combining the outputs. For
classification type problem there are two major ways to
combine the outputs, one is voting and another is averaging.
In our work, we implemented the latter approach. The averag-
ing mechanism works by combining each model’s prediction
equally. The hyperparameters for the ensemble model are
summarized in Table III.

TABLE III: Training Parameters for Ensemble Architecture

Parameter Value

Number of Epochs Trained 80

Batch Size 1

Output Layer Activation Softmax
Optimizer Adam

Initial Learning Rate 0.05

Loss Function Categorical Crossentropy
Total Number of Parameters 91,391,817
Trainable Parameters 37,020,649
Non-Trainable Parameters 54,371,168

IIT. RESULT ANALYSIS

With the custom CNN approach, the accuracy value is not
satisfactory enough. The reason behind such performance is
mainly the dataset size. Such a small dataset is not suitable
for machine learning models because they tend to overfit,
meaning they perform really well on training data, but poorly
on test data. Even though the training accuracy is nearly 100%,
the validation accuracy is 59.38%. We tried several empirical
methods to regularize the model, but the accuracy value did
not improve.

Because of this, in the second approach we utilized data
augmentation. Additionally, after analyzing prior studies, we
came to the conclusion that transfer learning works well
for scalograms and can achieve quite good accuracy which
motivated us to incorporate transfer learning in ensemble
methods.
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Fig. 6: Training and validation Evaluation Curves for Ensem-
ble Architecture

Fig 6 represents how the accuracy and loss value change
with increase in epoch for the ensemble approach. From the
curves, it is obvious that the validation performance of the
model is almost as good as the training performance which
means the model is able to generalize. To make sure the model
did not overfit, we performed k-fold cross validation for 20
epoch with £ = 5 which resulted in around 99.98% accuracy.
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Fig. 7: Tllustration of 5-fold cross validation

Along with accuracy, other evaluation metrics like loss,
accuracy, precision, and recall are calculated.

TABLE 1IV: Evaluation Metrics of the Validation data for the
Ensemble model

Evaluation Metric Value
Loss - 0.226
Accuracy - 1.0
Precision - 1.0
Recall - 1.0

Precision and recall are defined by the ratio shown in
equation (2) and (3) respectively. Where TP = True Positive,
FP = False Positive and FN = False Negative. All the
evaluation metrics are summarized in Table IV.

Table V compares the performance of some state-of-the-art
research works with our work.

IV. CONCLUSION

Our model achieves 99.98% accuracy with 5-fold cross
validation to classify three classes ARR, NSR and CHF
experimented on Physionet dataset. Time series ECG data
was transformed into image data with wavelet transformation
for compatibility with CNN models. CNN based architectures
generated comprehensive results whereas transfer learning-
based model performed better. But single transfer learning-
based model was not adequate enough to command perfect
accuracy and reliability. Hence, our proposed transfer learn-
ing based ensemble model with soft voting outperforms all
previous literature with a cost of minor computational run-
time.
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